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Abstract. Roadside noise barriers (RNBs) are important urban infrastructures to ensure that cities remain live-
able. However, the absence of accurate and large-scale geospatial data on RNBs has impeded the increasing
progress of rational urban planning, sustainable cities, and healthy environments. To address this problem, this
study creates a vectorized RNB dataset in China using street view imagery and a geospatial artificial intelligence
framework. First, intensive sampling is performed on the road network of each city based on OpenStreetMap,
which is used as the georeference for downloading 6× 106 Baidu Street View (BSV) images. Furthermore,
considering the prior geographic knowledge contained in street view images, convolutional neural networks
incorporating image context information (IC-CNNs) based on an ensemble learning strategy are developed to
detect RNBs from the BSV images. The RNB dataset presented by polylines is generated based on the identified
RNB locations, with a total length of 2667.02 km in 222 cities. Last, the quality of the RNB dataset is evaluated
from two perspectives, i.e., the detection accuracy and the completeness and positional accuracy. Specifically,
based on a set of randomly selected samples containing 10 000 BSV images, four quantitative metrics are cal-
culated, with an overall accuracy of 98.61 %, recall of 87.14 %, precision of 76.44 %, and F1 score of 81.44 %.
A total length of 254.45 km of roads in different cities are manually surveyed using BSV images to evaluate the
mileage deviation and overlap level between the generated and surveyed RNBs. The root mean squared error
for the mileage deviation is 0.08 km, and the intersection over union for overlay level is 88.08 %± 2.95 %. The
evaluation results suggest that the generated RNB dataset is of high quality and can be applied as an accurate and
reliable dataset for a variety of large-scale urban studies, such as estimating the regional solar photovoltaic po-
tential, developing 3D urban models, and designing rational urban layouts. Besides that, the benchmark dataset
of the labeled BSV images can also support more work on RNB detection, such as developing more advanced
deep learning algorithms, fine-tuning the existing computer vision models, and analyzing geospatial scenes in
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BSV. The generated vectorized RNB dataset and the benchmark dataset of labeled BSV imagery are publicly
available at https://doi.org/10.11888/Others.tpdc.271914 (Chen, 2021).

1 Introduction

In recent years, several studies have documented the substan-
tial impact of traffic noise problems in cities (Apparicio et al.,
2016; Begou et al., 2020). Roadside noise barriers (RNBs)
are a vital urban infrastructure that contribute significantly to
mitigate undesirable traffic noise in communities (Abdulka-
reem et al., 2021; Ning et al., 2010). Additionally, RNBs con-
tribute to the development of sustainable cities in many ways.
For example, with the emphasis on new energy, RNBs are be-
ing used to install solar photovoltaic panels, thereby increas-
ing the utility of new energy sources (Gu et al., 2012; Zhong
et al., 2021). The reasonable presence of RNBs also enables
the airflow in the urban canyon region to be adjusted, thereby
improving the roadside air quality (Huang et al., 2021; Zhao
et al., 2021). Because of the importance of RNBs in building
sustainable cities, the demand for RNBs has increased along-
side traffic growth in recent decades (Den Boer and Schroten,
2007; Oltean-Dumbrava and Miah, 2016). There are bottom-
up benefits from establishing an accurate and standardized
large-scale RNB dataset with detailed geospatial information
about RNBs, including their mileage, location, and distribu-
tion (Liu et al., 2020; Wang and Wang, 2021). Specifically,
precise RNB locations enable traffic departments to effec-
tively manage and maintain this type of infrastructure (Sainju
and Jiang, 2020), urban research can simulate dynamic cities
based on accurate RNB geospatial information (Wang and
Wang, 2021; Zhao et al., 2017), and governments can rely on
the RNB maps to examine urban layouts and create green and
sustainable cities (Song et al., 2021; Song and Wu, 2021).

Over the past few years, extensive geospatial databases
have been established to store data on many aspects of ur-
ban infrastructure (Griffiths and Boehm, 2019; Perkins and
Xiang, 2006). However, the sharing and exchange of RNB
data in these databases are restricted, and the data only cover
a limited geographic area (Wang et al., 2019; K. Zhang et
al., 2022). These challenges to data acquisition are because
databases have to adhere to various standards related to ge-
ographic data (e.g., file format and geographic coordina-
tion reference; Lafia et al., 2018). On the other hand, the
RNB data are often created and updated manually through
road inspections and investigations which are costly and time
consuming, especially on a large scale (Potvin et al., 2019;
Ranasinghe et al., 2019). The RNB geospatial dataset must
be generated, and kept up to date, as soon as possible using
alternative, efficient methods.

Street view imagery is georeferenced data densely cov-
ering the road network of cities. As a new geospatial data
source, it provides depictions of real-world surroundings, in-

cluding natural landscapes and the built environment, and
enables users to recognize physical objects, urban dynam-
ics features, and geographic scenes on a large scale (Zhang
et al., 2018). In addition, as part of the data sharing move-
ment, an increasing number of community-based organiza-
tions and corporations, such as Baidu Maps, Tencent Maps,
and Google Maps, are regularly generating and updating
open-access street view imagery (Qin et al., 2020; Zhang et
al., 2019). Such big data bring great prospects for acquiring
urban infrastructure information (e.g., RNBs), with benefits
such as broad coverage, a rapid update speed, and low ac-
quisition costs (Kang et al., 2020). However, manual inter-
pretation is a tedious task, and conventional computer vision
algorithms struggle when confronted with large amounts of
data and complex image features (Zhang et al., 2018).

With the advancement of computing hardware and frame-
works, deep learning methods now have an increased capac-
ity for extracting semantic features from a large amount of
data (Lecun et al., 2015; Liu et al., 2022). The emerging
approaches are increasingly being used to interpret physi-
cal objects and detect interior patterns from Earth observa-
tion data (Z. Zhang et al., 2022; Qian et al., 2022). Mean-
while, image classification based on deep learning has been
used to identify RNBs using street view imagery (Zhong et
al., 2021). However, for the purposes of identifying RNBs,
prior geographic knowledge, which is essential, is frequently
overlooked, such as the fact that RNBs are frequently located
between roads and densely populated regions (e.g., residen-
tial, educational, and medical areas; Arenas, 2008; Wang et
al., 2018; K. Zhang et al., 2022). In recent years, a new
framework of data-driven research based on geospatial ar-
tificial intelligence (GeoAI) and machine learning has re-
sulted in multiple notable improvements in the discovery of
geographic scene knowledge (Goodchild and Li, 2021; Li,
2020). When empirical and prior spatial information are in-
cluded into deep learning approaches, they can help to de-
velop a more holistic understanding of a research subject and
mitigate the effects of data scarcity or representational bias
(Janowicz et al., 2019; Qian et al., 2020). As a result, it is pos-
sible to enhance the effectiveness of deep learning methods
in identifying RNBs by incorporating some prior geographic
knowledge from street view imagery. Additionally, Wolpert
and Macready (1997) introduced the “no free lunch” theory,
demonstrating that a single model must pay for some accu-
racy by degrading its generalizability. This is acceptable, as
it is challenging to construct a perfect solution for all scenar-
ios using a single model, particularly when dealing with vast
volumes of data and large-scale areas (Wang and Li, 2021).
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The purpose of this study is to build an accurate and na-
tionwide vectorized RNB dataset utilizing Baidu Street View
(BSV) imagery. To improve the performance for the detec-
tion of RNBs, this work proposes a GeoAI framework. Con-
cretely, an ensemble of convolutional neural networks in-
corporating image context information (IC-CNNs) is devel-
oped, which considers the prior geographic knowledge con-
tained in street view images. Subsequently, a post-processing
method is applied to generate the vectorized RNB dataset
based on the identified RNB locations. Last, the RNB dataset
quality is quantitatively evaluated from two perspectives, i.e.,
the detection accuracy and the completeness and positional
accuracy. The main contributions of this study can be sum-
marized as follows:

1. This study provides the first reliable and nationwide
vectorized RNB dataset in China and provides labeled
BSV images which can be used as a benchmark dataset.

2. A GeoAI framework is presented for the processing of
numerous BSV images in order to generate the RNB
mapping and for the comprehensively evaluation of the
generated results.

3. This study presents multiple IC-CNNs based on prior
geographic knowledge and an ensemble learning strat-
egy to achieve high-performance object identification
from street view imagery.

The remainder of this paper is organized as follows. Section 2
briefly describes the data and methods used to generate and
evaluate the RNB dataset. Section 3 presents the results of the
RNB mapping and an evaluation and analysis for the RNB
dataset. Section 4 discusses the capability of proposed meth-
ods, as well as the challenges and limitations of this work.
The last section provides the conclusions of this study.

2 Data and methods

2.1 The GeoAI framework

The GeoAI framework’s workflow is divided into three
stages: data preparation, modeling, and evaluation, as shown
in Fig. 1. To begin with, BSV images are gathered during
the data preparation stage using OpenStreetMap (OSM) road
data and the BSV application programming interface (API).
Subsequently, BSV images are used to generate various sam-
ples for modeling and evaluation. During the modeling stage,
deep learning approaches are used to detect RNBs from
the BSV imagery. Using the vectorization post-processing
method, the identified and scattered RNB locations are sub-
sequently processed into a vectorized dataset. During the
evaluation stage, the quality of the created dataset is quan-
titatively assessed in two aspects, i.e., the detection accuracy
and completeness and positional accuracy.

2.2 Data preparation

There are three types of data are acquired for this study,
i.e., the road networks, administrative boundary, and street
view imagery. Afterwards, training, validation, and test sam-
ples are collected based on these data. The data from Taiwan
Province are scarce.

2.2.1 Road networks

The road networks were downloaded from OSM (https:
//www.openstreetmap.org/, last access: 16 May 2021) in
May 2021, which are polyline-based and include a variety
of road types, including motorways, trunk roads, primary
roads, and secondary roads. According to previous findings,
the quality of OSM road networks in China is high in terms of
completeness and positional accuracy (Liu and Long, 2015).
In addition, RNBs have a high probability of being installed
on motorways and trunk roads (K. Zhang et al., 2022). There-
fore, given the expense of acquiring and computing BSV im-
ages, in this study, samples on motorways and trunk roads
are only considered for downloading BSV images. Figure 2a
depicts the spatial distribution of these two types of roads.

2.2.2 Administrative boundary

The city boundary was acquired from http://bzdt.ch.mnr.gov.
cn/ (last access: 21 April 2021) in April 2021. According
to the urban management hierarchy established by the Chi-
nese government, cities in China are divided into four tiers
(Guan and Rowe, 2018; Jia et al., 2020), including munici-
palities, sub-provincial cities, and prefecture-level cities, and
their locations are shown in Fig. 2b. Specifically, tier 1 is cen-
trally administered cities and municipalities. Tier 2 is primar-
ily sub-provincial cities, whereas tier 3 is province capitals
and large prefecture-level cities. Tier 4 is ordinary prefecture
cities. Cities with varying administrative levels have varying
authorities over resource allocation and jurisdiction (Guan et
al., 2018).

2.2.3 Street view imagery

With their high-resolution and detailed information on Chi-
nese streets, BSV images are of comparable quality to
Google Street View images, which are not available in China
(H. Zhou et al., 2019). Numerous sample points along OSM
roads are collected, and the BSV API is utilized to obtain
street view images at those locations. Following the work of
K. Zhang et al. (2022), a sampling interval of around 25 m
is utilized to account for the tradeoff between data granu-
larity and the expense of downloading imagery. As a result,
the total number of sample points is 24 871 839. As shown in
Fig. 3, an illustration of the BSV images, with photographs
showing different directions, shows that a BSV image with a
90◦ viewing angle is more appropriate for the present work
because it provides a comprehensive roadside view. Hence,
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Figure 1. The flowchart of the GeoAI framework to generate the vectorized RNB dataset.

Figure 2. There are three data sources used in this study. OSM road network data (a), the Chinese administrative boundary, with four city
tiers (b), and the spatial distribution of the BSV image locations (c) are shown. Road networks are from © OpenStreetMap contributors
(2022) and distributed under the Open Data Commons Open Database License (ODbL) v1.0.

to identify the RNBs along the corresponding roadside, BSV
images with a 90◦ viewing angle are acquired. Owing to the
absence of BSV images on a few road segments in a par-
ticular year, these will be supplemented in adjacent years.
Additionally, the BSV sensors may be obstructed by some
vehicles or other surrounding objects. These issues are re-
solved through the use of multitemporal BSV images (ones
from 2013 to 2021 are downloaded in this study). A total

of 6 008 674 BSV images are downloaded with a size of
500 pixels× 400 pixels, and their spatial locations are shown
in Fig. 2c. Figure 4 depicts the spatial distribution of the
number of BSV images in China, with the eastern region and
higher city tiers having a greater number of BSV images.

Earth Syst. Sci. Data, 14, 4057–4076, 2022 https://doi.org/10.5194/essd-14-4057-2022



Z. Qian et al.: Vectorized dataset of roadside noise barriers in China 4061

Figure 3. Illustration of BSV images, with photographs showing different directions (BSV images are from © Baidu Maps, 2022).

Figure 4. Zonal statistics of the number of BSV images in China.

2.2.4 Training, validation, and test sample collection

An effective sampling technique for generating training, val-
idation, and test image samples is developed to detect RNBs
from the large volume of BSV images collected. According
to their physical shapes, the RNBs identified in this study
can be categorized into the following four distinct types: up-
right noise barrier, top curved noise barrier, noise barrier with
folded corners at the top, and large curved noise barrier, as
depicted in Fig. 5. Figure 1 illustrates the different steps fol-

lowed in the data preparation stage. The BSV images are
classified into four tiers based on their location within the
city administration hierarchy. Subsequently, the training, val-
idation, and test sampling set are subdivided from the entire
images, accounting for 60 %, 20 %, and 20 % of images, re-
spectively. These sampling sets can be used to collect the
corresponding samples and are beneficial in that they avoid
the mixing of samples.

Previous investigations revealed that BSV images with
RNBs are rare, accounting for less than 5 % of the sam-
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Figure 5. Illustration of BSV samples, including four typical types of RNBs based on physical shapes (a) and three types of confusing
negative samples which look like RNBs (b) (BSV images are from © Baidu Maps, 2022).

pled images. To alleviate the impact of the class imbalance
problem on model training, 50 000 images are randomly se-
lected from each city tier based on the training sampling set.
These samples are labeled as positive type (i.e., image with
RNB) or negative type (i.e., image without RNB) by man-
ual visual interpretation, the details of which are shown in
Fig. 6. Subsequently, the same number of positive and nega-
tive samples are maintained. Certain objects, such as tunnel
inner walls, billboards, and guardrails, seem like RNBs in
images, which intensifies the difficulty of deep learning, as
shown in Fig. 5. Therefore, 500 images of each of these ob-
jects are added as confusing negative samples to the training

samples. The ultimate training sample size is 14 484, includ-
ing 6492 positive and 7992 negative samples. To generate
the validation and test samples, 500 and 2500 image sam-
ples from each city tier are chosen. There are 79 positive
samples and 1921 negative samples in the validation sam-
ples, while there are 350 positive samples and 9650 negative
samples in the test samples. The details of the sample collec-
tion results are shown in Table 1. The labeled BSV images
are available at https://doi.org/10.11888/Others.tpdc.271914
(Chen, 2021).
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Figure 6. The flowchart of BSV image labeling.

Table 1. Details of sample collection results.

Type Tier 1 Tier 2 Tier 3 Tier 4 Confusing sample Total

Training samples
Positive 2886 2191 870 545 – 6492
Negative 2886 2191 870 545 1500 7992
Total 5772 4382 1740 1090 1500 14 484

Validation samples
Positive 40 18 18 3 – 79
Negative 460 482 482 497 – 1921
Total 500 500 500 500 – 2000

Test samples
Positive 129 115 77 29 – 350
Negative 2371 2385 2423 2471 – 9650
Total 2500 2500 2500 2500 – 10 000

2.3 Modeling

2.3.1 Convolutional neural network incorporating image
context information (IC-CNN)

RNBs are widely placed on the roadside in densely populated
regions, such as residential areas and educational and gov-
ernment institutions, as previously described in other studies
(Arenas, 2008; Wang et al., 2018; K. Zhang et al., 2022).
Therefore, based on this prior geographic knowledge, an
IC-CNN that leverages the context information contained
in BSV images is developed which aims at enhancing the
RNB detection accuracy. Figure 7 illustrates the construc-
tion of IC-CNN, which adopts the ResNet architecture (He
et al., 2016). In this workflow, prior geographic knowledge
is incorporated into the neural network by means of transfer-

ring learning. Initially, 500 samples are randomly selected
from positive and negative training samples in each tier.
There are three context labels added, depending on the con-
text of these BSV images, i.e., building dominated, non-
building dominated, and uncertain (unable to judge the back-
ground of the BSV image because it is obscured by objects),
as shown in Fig. 6. The context labels are interpreted by
semantic segmentation models released by the MIT Com-
puter Vision team (B. Zhou et al., 2019). Besides the sky
and ground objects, images are judged to be building dom-
inated if the ratio of building objects is the most; other-
wise, they are evaluated to be non-building dominated. Ad-
ditionally, the uncertain type is classified by a visual inter-
pretation of whether the background environment in the im-
age is obscured. These labeled images are available at https:
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Figure 7. The construction of the convolutional neural network incorporating image background information (BSV images are from © Baidu
Maps, 2022).

//doi.org/10.11888/Others.tpdc.271914 (Chen, 2021). Next,
4000 samples with image context labels are used to train the
IC-CNN on a preliminary basis, using hybrid loss to opti-
mize the parameters in IC-CNN for image context and RNB
identification, as formulated in Eq. (1). After the network has
converged, the IC-CNN’s classifier is replaced with a binary
classification, and all the training samples are supplemented
to fine-tune and intensively train the network.

Hybrid loss= CE
(
pimage context

)
+ 2×CE(pnoise barrier), (1)

CE(p)=−
∑

p · log(p), (2)

where pimage context is the confidence of the image context
identification, pnoise barrier is the confidence of the RNB iden-
tification, and CE(p) refers to the cross-entropy loss function
(Hu et al., 2018).

2.3.2 Ensemble learning strategy

Owing to the high cost of labeling and the restricted quantity
of trained samples, an ensemble learning strategy for enhanc-
ing RNB detection accuracy is utilized in this study based on
the “no free lunch” theory (Wolpert and Macready, 1997). In
an ensemble learning domain, the effective strategy to boost
performance is to integrate the numerous high-variance mod-
els together (Cao et al., 2020). Therefore, this study inte-
grates four IC-CNNs, and their convolutional layers are cho-
sen from the ResNet family (He et al., 2016; Zagoruyko and
Komodakis, 2016), including ResNet101, ResNet152, Wide
ResNet50, and Wide ResNet101. The integration of the four
IC-CNNs with varying capacities for feature extraction can
make a significant contribution to achieving high detection
accuracy.
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Figure 8. Zonal statistics of RNB mileage in China. The blank areas indicate no RNBs or a lack of BSV images.

2.3.3 Vectorization post-processing

After performing a detection run by an ensemble of IC-
CNNs, the identified and scattered RNB locations are con-
nected to create a vectorized RNB dataset by a post-
processing technique, which is based on the spatial neigh-
bor relationship between samples. Specifically, if adjacent
sample images of the same road contain RNB objects, their
locations will be connected. Furthermore, the findings of
Sainju and Jiang (2020) demonstrated that the “near objects
are more related” principle (Tobler, 1970, 2004) holds true
when using street view imagery to detect objects at the ur-
ban scale. Therefore, in this study, given the likelihood of
RNB misidentification, if a sample image is flanked by im-
ages containing RNBs in the same road, it will be considered
as a positive type to minimize the impact of misidentification.

2.4 Evaluation methods

2.4.1 Metrics for detection accuracy

To evaluate the accuracy of RNB detection, four quantita-
tive metrics in the deep learning classification task, includ-
ing overall accuracy (OA), recall, precision, and F1 score
(Thomas et al., 2020) are analyzed. Due to the class imbal-
ance problem in BSV images, OA is susceptible to being af-
fected by a large number of sample types in this study (i.e.,
negative type sample). In comparison, precision and recall
can concentrate on positive type samples. The F1 score is
the most comprehensive of these metrics because it consid-
ers both precision and recall. After detecting the RNBs in
BSV images, the number of false negative (FN), true negative

(TN), true positive (TP), and false positive (FP) images is cal-
culated. True positive means that the prediction and ground
truth of images are both positive. Conversely, false negative
means the predictions are negative while the ground truths
are positive. The four metrics are calculated based on the fol-
lowing (Thomas et al., 2020):

OA=
TP+TN

TP+FP+TN+FN
, (3)

Precision=
TP

TP+FP
, (4)

Recall=
TP

TP+FN
, (5)

F1 score=
2 ·Precision ·Recall
Precision+Recall

, (6)

2.4.2 Metrics for completeness and positional accuracy

To quantitatively evaluate the completeness and positional
accuracy of generated RNBs, two quantitative metrics, in-
cluding the root mean squared error (RMSE) and the in-
tersection over union (IoU) are adopted (Rezatofighi et al.,
2019). To calculate these metrics, numerous roads are se-
lected from various cities and are surveyed manually as
ground truths based on BSV imagery. Based on the mileage
deviation and overlap relationship between the generated and
surveyed RNBs, RMSE and IoU are calculated following
Eqs. (7) and (8), respectively:

RMSE=

√√√√ 1
m

m∑
i=1

(li − l̂i)2, (7)
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Figure 9. Distribution of RNBs in several representative cities (base maps are from Esri).

where m is the number of selected roads, li is the surveyed
RNB mileage of the ith road, and l̂i is the generated RNB
mileage of the ith road.

IoU=
Lintersection

Lunion
, (8)

where Lintersection is intersection mileage of the generated and
surveyed RNB, and Lunion is union mileage of the generated
and surveyed RNB.

2.5 Implementation configuration

Several techniques to enhance the performance of the model
throughout the training and inference stages are employed
in this study. Data augmentation techniques such as random
resized cropping and random horizontal flipping are utilized
to increase the data volume and decrease model bias error.
The model parameters are optimized using the cosine an-
nealing learning rate scheduler (Bhattacharyya et al., 2021)
and AdamW optimizer (Loshchilov and Hutter, 2017). Long
training and inference resized tuning (Touvron et al., 2019)
are employed to improve the model’s performance. Finally,

an ensemble of models identifies RNBs based on the voting
mechanism.

3 Results

3.1 RNB mapping result

The final RNBs dataset is available at https://doi.org/10.
11888/Others.tpdc.271914 (Chen, 2021). Details of the BSV
image identification results are shown in Appendix A, and
details of RNB mileage by city in China are shown in
Appendix B, with the total RNB mileage of 2667.02 km
and the average RNB mileage for each city tier of
102.39 km (±117.83 km), 66.36 km (±18.70 km), 22.19 km
(±12.52 km), and 1.12 km (±0.42 km), respectively. The
quantitative results suggest that there are substantial varia-
tions between the different city tiers. Tiers 1 and 2 contain
a major portion of the total RNB mileage compared with
the other city tiers; moreover, confidence intervals show that
the higher the city tier, the greater the difference in the level
of RNB construction in that city tier. The reason for these
variances is that the unique urban administration system in
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Figure 10. RNB mapping result in the city scale (BSV images are from © Baidu Maps, 2022).
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Figure 11. Heat maps of IC-CNNs on BSV images with RNB. The hotspots indicate the area where the attention of IC-CNN is focused
(BSV images are from © Baidu Maps, 2022).

China mandates lower-tier cities to rigidly follow the lead-
ership of higher-tier cities (Ma, 2005; Zhao et al., 2003).
Higher-tier cities are rapidly increasing in size and occupy-
ing considerable resources, while lower-tier cities are devel-
oping slowly (Au and Henderson, 2006; Lin, 2002). The spa-
tial distribution of RNB mileage among cities is further de-
picted in Fig. 8, where blank areas indicate the absence of
RNBs or BSV images (there are 17 cities lacking BSV im-
ages, as shown in Appendix B). Figure 8 suggests that RNBs
in eastern China are more densely distributed and have longer
mileage. To a certain extent, it shows that the statistics cor-
relate with the development of Chinese cities, implying that
higher-tier cities have a high probability of covering and up-
dating BSV imagery or laying down RNBs.

After analyzing the generated RNB dataset from a na-
tional scale, three cities with the highest RNB mileage in
each tier are selected to analyze the citywide mapping re-
sults, as shown in Fig. 9. The figure shows that RNBs are
generally clustered in the central areas of these cities. For
example, the RNBs in Shanghai are mainly clustered on the
third ring road, while those in Beijing are mainly clustered
on the sixth ring road. As a result, when combined with the
planned layout and actual mapping of RNB distribution, the
generated RNB dataset can partially reflect the rationality of
urban infrastructure planning and layout.

Table 2. Evaluation results of RNB identification in different city
tiers. The evaluation results of every city tier are calculated using the
test samples of the corresponding city tier, while the overall evalua-
tion results are calculated using the entire test samples.

City tier OA Recall Precision F1 score
(%) (%) (%) (%)

Tier 1 98.12 88.37 78.08 82.91
Tier 2 98.28 86.09 78.57 82.16
Tier 3 98.68 87.01 74.44 80.24
Tier 4 99.36 86.21 67.57 75.76
Overall 98.61 87.14 76.44 81.44

3.2 Evaluation and analysis

3.2.1 RNB detection accuracy

Table 2 summarizes the evaluation results of the RNB identi-
fication at different city tiers based on test samples. The OA
and the F1 score for the overall city tiers are 98.61 % and
81.44 %, respectively. However, the accuracy is greater for
higher-tier cities than for lower-tier cities. This may be at-
tributed to the fact that cities with lower tiers appear to have
less RNB infrastructure, resulting in a more severe class im-
balance problem for deep learning methods, which impacts
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Table 3. Ablation study design. The ablation study combines the four strategies used in this study to illustrate their effectiveness.

Ablation Baseline Incorporate image Add confusing Ensemble learning
(ResNet101) context information negative samples strategy

I X
II X X
III X X X
IV X X X X

Table 4. Quantitative results of ablation. The ablation results show that the proposed methods have the highest RNB detection accuracy. The
bold values indicate the highest value in each metric.

Ablation OA Recall Precision F1 score

I 97.81 % (±0.01 %) 62.91 % (±0.41 %) 74.14 % (±0.16 %) 64.62 % (±0.25 %)
II 97.50 % (±0.03 %) 86.00 % (±0.09 %) 63.67 % (±0.25 %) 72.05 % (±0.15 %)
III 98.02 % (±0.01 %) 81.71 % (±0.07 %) 68.82 % (±0.13 %) 74.41 % (±0.07 %)
IV 98.32 % (±0.00 %) 85.60 % (±0.08 %) 71.87 % (±0.04 %) 78.09 % (±0.05 %)

the training and generalization of the model. Therefore, the
results indicate that, prior to using this dataset, an assessment
of the influence of regional quality differences on specific ap-
plications is required.

3.2.2 RNB completeness and positional accuracy

To evaluate the completeness and positional accuracy of the
RNB dataset, approximately 254.45 km of roads are selected
from different city tiers and manually surveyed using the
BSV imagery. Appendix C summarizes the detailed quan-
titative differences between generated and surveyed RNBs in
terms of mileage deviation and level of overlap. The over-
all RMSE for the mileage deviation is 0.08 km, and the IoU
for the overlay level is 88.08 %± 2.95 %. The results shows
that the generated and surveyed RNBs are highly consistent
in terms of mileage and distribution, demonstrating the high
completeness and positional accuracy of the generated RNB
dataset.

Moreover, as illustrated in Fig. 10, a visual comparison
between surveyed and generated RNBs on various roads de-
picts that the generated and surveyed RNBs on the road are
overall consistent in terms of mapping. However, several
validated points demonstrated that the proposed deep learn-
ing approach incorrectly recognized small RNB objects in
the images, such as validated points IV, II, and III on Bei-
jing’s Jingmen Highway, Zhengzhou’s Longhai Expressway,
and Wenzhou’s Ouhai Boulevard, respectively. Additionally,
several objects that looked similar to RNBs, such as multi-
windowed buildings, are misclassified as a positive type, for
example, point IV on Wenzhou’s Ouhai Boulevard and points
II and III on Nantong’s Binjiang Bridge. Despite these mis-
classifications, most of the validated points demonstrated a
high accuracy of the RNB prediction and the high perfor-

mance of the proposed framework, implying the reliability
of the generated RNB dataset.

4 Discussion

4.1 Model capability

An ablation study is conducted to demonstrate the quality of
the generated dataset and validate the effectiveness of devel-
oped methods (Table 3). As shown in Table 4, the combina-
tion of proposed strategies achieves the highest performance.
The ablation results illustrate that the effectiveness of pro-
posed strategies, including integrating image context infor-
mation into CNN, adding confusing negative samples, and
using an ensemble learning strategy. Additionally, Fig. 11 de-
picts the areas of the IC-CNN’s attention, revealing that IC-
CNNs not only have a capacity for focusing on RNB objects
in BSV images but also have a sense of their surroundings.
The results suggest the reliability of the generated dataset and
partially decipher the “black box” of deep learning to explain
the high performance of the developed methods. Notably,
this study successfully achieves incorporating some of the
prior geographic knowledge into the deep learning method.
RNB detection accuracy can be increased further by com-
bining more comprehensive knowledge of geographic scenes
from BSV images into deep learning network, such as vari-
ous geographic elements and processes and the associated
construction theory (Lü et al., 2018).

4.2 Limitations and future work

This study has several limitations in the process of dataset
generation which can be grouped into three categories,
namely data source, ground scenario, and modeling.
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Table 5. Confidence assessment in the mapping accuracy for cities with low-mileage RNBs.

Mileage interval (km) 0–0.1 0.1–0.2 0.2–0.3 0.3–0.4 0.4–0.5 0.5–0.6 0.6–0.7 0.7–0.8

Confidence (%) 14.80 29.48 48.97 48.11 62.96 70.09 72.02 81.31

Due to the economic status, topographical conditions, or
government policies, not all Chinese cities are covered by
BSV imagery, with data not being available for 17 cities
(Deng et al., 2021; Du et al., 2020). In addition, challenges
owing to overexposure or obstruction of the sensors by ve-
hicles hinder the capturing of a complete street scene. As a
result, the natural characteristics of the data source can have
certain impacts on the accuracy of the RNB dataset.

The road/traffic environment is often complex. Concretely,
BSV sensors can detect RNBs on distant highways or other
lanes, and it may result in some mistakes during RNB detec-
tion and mapping. However, the likelihood of this occurring
is small (about 4 % of RNB samples) by sampling investiga-
tion.

This study implicitly presupposes that BSV images are in-
dependent and identically distributed. As shown in Fig. 9, the
developed GeoAI framework can achieve a high performance
in continuous RNB mapping. However, the spatial autocor-
relation effect in BSV images is overlooked, as BSV images
taken along the same road network path frequently resemble
the adjacent one (Sainju and Jiang, 2020).

Moreover, there are some uncertainties in cities with short
mileage RNBs which may be generated due to misidentifica-
tion. A manual survey is performed to verify the confidence
level of these cities. Table 5 shows the quantitative results,
which indicate that the shorter the RNBs, the lower the confi-
dence level. In addition, the results show that the confidence
level is lowest for cities with RNBs of less than 0.2 km, so
further validation is needed when applying them in specific
applications.

In the future, to address the data shortage issue, more
data sources, such as Google Maps and Tencent Maps, will
be used. Additionally, approaches for photogrammetry and
image scene understanding techniques will be developed to
tackle the complex ground scenario. Finally, end-to-end deep
learning algorithms will be constantly enhanced by the ad-
dition of more powerful units and structures to account for
spatial autocorrelation in street view imagery.

5 Data availability

The road networks come from OSM (https:
//www.openstreetmap.org/, OpenStreetMap contribu-
tors, 2021), a collaborative project dedicated to pro-
viding many types of freely editable geographic data
for the world. City boundaries can be obtained from
http://bzdt.ch.mnr.gov.cn/ (Map Technical Review Center,
Ministry of Natural Resources, China, 2021). In addi-

tion, BSV images can be downloaded by using BSV API
(https://api.map.baidu.com/panorama/v2?key=parameters,
Baidu Maps, 2022). Finally, the generated RNB
dataset, labeled BSV image benchmark, and RNB
detection results are available to the public at
https://doi.org/10.11888/Others.tpdc.271914 (Chen, 2021).
Specifically, the generated RNB dataset is grouped by city
level, with attributes of city tier, city name, province, and
RNB mileage; the image labels are documented in a ∗.csv
file for a benchmark of the image context, and all images are
categorized into specific folders. The RNB detection results
include meta information of all BSV samples, such as lon-
gitude, latitude, city name, city tier, timing of imaging, and
detection label (0 presents non-RNB type, while 1 presents
RNB type). The mileage in RNB dataset is calculated with
the Albers equal-area conical projection.

6 Code availability

The codes of deep learning approaches in this study are
available at https://doi.org/10.11888/Others.tpdc.271914
(Chen, 2021) and https://github.com/ChanceQZ/
NoiseBarrierIdentification (last access: 20 January 2022
). Python 3 packages such as PyTorch, NumPy, and
OpenCV are used to develop the code. The vectorization
post-processing procedure is performed in the ArcGIS Pro
platform.

7 Conclusion

This study presents the first nationwide vectorized dataset
of RNB and the benchmark dataset of the labeled BSV im-
ages in China using BSV imagery and a GeoAI framework.
In this study, based on prior geographic knowledge in BSV
imagery, RNB samples are identified based on deep learn-
ing approaches, and the vectorized RNB dataset is subse-
quently constructed using the vectorization post-processing
procedure. The created RNB dataset is evaluated from two
perspectives, i.e., the detection accuracy and the complete-
ness and positional accuracy. The four quantitative metrics,
OA, recall, precision, and F1 score, with values of 98.61 %,
87.14 %, 76.44 %, and 81.44 %, illustrate high accuracy of
the model in RNB detection. The level of mileage deviation
and overlay between the generated and surveyed RNBs are
further determined via a manual survey of around 254.45 km
of roads in various cities, with the RMSE of 0.08 km and IoU
of 88.08 %± 2.95 % revealing that the created and surveyed
RNBs are consistent and reliable.

Earth Syst. Sci. Data, 14, 4057–4076, 2022 https://doi.org/10.5194/essd-14-4057-2022

https://www.openstreetmap.org/
https://www.openstreetmap.org/
http://bzdt.ch.mnr.gov.cn/
https://api.map.baidu.com/panorama/v2?key=parameters
https://doi.org/10.11888/Others.tpdc.271914
https://doi.org/10.11888/Others.tpdc.271914
https://github.com/ChanceQZ/NoiseBarrierIdentification
https://github.com/ChanceQZ/NoiseBarrierIdentification


Z. Qian et al.: Vectorized dataset of roadside noise barriers in China 4071

The intended applications for the two datasets are diverse.
In terms of the vectorized dataset of RNBs, urban studies
can benefit from accurate information of RNB mileage, lo-
cation, and distribution. For example, the regional energy
potential of solar photovoltaic panels on RNB can be esti-
mated, finer 3D urban models are able to be developed, and
the sustainability of urban layouts can be evaluated. On the
other hand, the benchmark dataset of labeled BSV images
may contribute to multiple other research and applications
related to RNBs identification, such as developing advanced
deep learning algorithms and fine-tuning existing computer
vision models to detect RNBs more accurately and explor-
ing the further relationship between the RNB locations and
surrounding environment.

Appendix A

Table A1. Details of the BSV image identification results.

City tier Negative Positive Total
(BSV image count) (BSV image count) (BSV image count)

Tier 1 764 155 64 563 828 718
Tier 2 1 600 346 138 013 1 738 359
Tier 3 1 425 402 89 389 1 514 791
Tier 4 1 890 369 36 437 1 926 806
Overall 5 680 272 328 402 6 008 674

Table A2. Identification of a confusion matrix based on test samples.

Tier 1 Predicted class

Negative Positive

True class
Negative 2339 32
Positive 15 114

Tier 2 Predicted class

Negative Positive

True class
Negative 2358 27
Positive 16 99

Tier 3 Predicted class

Negative Positive

True class
Negative 2400 23
Positive 10 67

Tier 4 Predicted class

Negative Positive

True class
Negative 2459 12
Positive 4 25

Overall Predicted class

Negative Positive

True class
Negative 9556 94
Positive 45 305

Appendix B

The total RNB mileage in China is 2667.02 km. The
RNB mileage values in different city tiers are 614.34,
995.45, 710.25, and 346.32 km, respectively. The av-
erage RNB mileage values in different city tiers are
102.39 km (±117.83 km), 66.36 km (±18.70 km), 22.19 km
(±12.52 km), and 1.12 km (±0.42 km), respectively.
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Table B1. Details of RNB mileage by city in China. The RNB mileage values of some cities are 0 km, indicating that they lack RNBs or
BSV images or that the BSV images are out of date. Specifically, there are 17 cities lacking BSV images, e.g., Baisha, Baoting, Changjiang,
Dingan, Ledong, Língāo, Sansha, Wenchang, Jiyuan, Daxing’anling, Shuangyashan, Guoluo, Huangnan, Bazhong, Nujiang, Zhoushan, Xinji.

Tier 1 Tier 4

City Mileage (km) City Mileage (km) City Mileage (km) City Mileage (km)

Shanghai 394.63 Foshan 41.42 Xinxiang 1.05 Jining 0.16
Beijing 99.83 Dongguan 26.48 Taizhou (Zhe) 1.04 Sanmenxia 0.15
Tianjin 57.07 Ganzhou 20.91 Hainan 0.99 Liupanshui 0.13
Hong Kong 46.20 Nantong 19.79 Jincheng 0.97 Karamay 0.12
Chongqing 15.39 Quanzhou 19.39 Hanzhong 0.95 Suqian 0.12
Macau 1.23 Zhongshan 16.61 Ya’an 0.89 Leshan 0.12

Tier 2 Wenzhou 11.59 Jiayuguan 0.88 Jingdezhen 0.11

City Mileage (km) Yangzhou 10.80 Anyang 0.88 Wuzhou 0.11

Guangzhou 133.72 Changzhou 10.53 Nanping 0.86 Shaoyang 0.10
Wuhan 118.20 Zunyi 9.46 Longyan 0.79 Chongzuo 0.10
Shenyang 106.46 Jiangmen 9.39 Jiaxing 0.78 Haidong 0.10
Hangzhou 102.97 Rizhao 6.31 Jiujiang 0.74 Shangqiu 0.09
Nanjing 80.57 Yichang 5.72 Xianyang 0.71 Xiangxi 0.08
Ningbo 78.13 Linyi 5.66 Liaoyang 0.70 Xuchang 0.08
Jinan 74.99 Deyang 5.61 Panjin 0.66 Xuancheng 0.08
Shenzhen 58.92 Kaifeng 5.61 Pingdingshan 0.65 Huangshan 0.08
Xiamen 52.62 Chifeng 4.74 Qingyuan 0.64 Xiangtan 0.08
Changchun 44.80 Zhuhai 4.17 Bayingolin 0.62 Bijie 0.08
Qingdao 39.01 Maanshan 4.14 Nanchong 0.56 Pingxiang 0.08
Dalian 38.15 Xingtai 3.76 Liuzhou 0.54 Changzhi 0.07
Chengdu 34.73 Zhenjiang 3.59 Zhangjiakou 0.51 Yichun (Hei) 0.07
Xi’an 26.73 Baoji 3.55 Sanming 0.5 Zhangzhou 0.06
Harbin 5.47 Shantou 3.13 Zhuzhou 0.49 Meizhou 0.06

Tier 3 Weifang 2.80 Xinyu 0.38 Ezhou 0.06

City Mileage (km) Huizhou 2.78 Jinzhong 0.37 Hinggan 0.06

Suzhou (Su) 183.04 Zhaoqing 2.77 Jiuquan 0.35 Fuxin 0.05
Zhengzhou 82.56 Weinan 2.76 Lu’an 0.35 Tongchuan 0.05
Hefei 58.62 Hengyang 2.76 Cangzhou 0.34 Yichun (Gan) 0.05
Guiyang 50.87 Jinhua 2.73 Nanyang 0.33 Yingkou 0.05
Changsha 49.60 Baoding 2.69 Heyuan 0.33 Honghe 0.04
Fuzhou (Min) 49.33 Huzhou 2.63 Tieling 0.28 Gannan 0.04
Nanchang 37.19 Xiangyang 2.51 Qinhuangdao 0.28 Zigong 0.04
Urumqi 30.56 Haixi 2.43 Tianmen 0.26 Shaoguan 0.04
Wuxi 24.54 Taian 2.35 Kizilsu Kirgiz 0.26 Bayannur 0.04
Kunming 24.49 Ordos 2.26 Xinzhou 0.25 Qujing 0.04
Shijiazhuang 21.97 Sanya 2.16 Changde 0.25 Chuxiong 0.04
Nanning 15.84 Mianyang 2.08 Tonghua 0.25 Suining 0.04
Taiyuan 14.91 Wuhu 2.05 Fuzhou (Gan) 0.24 Zhumadian 0.02
Xuzhou 12.49 Shangrao 2.01 Baiyin 0.24 Chuzhou 0.02
Xining 9.79 Lianyungang 1.97 Guilin 0.24 Yuncheng 0.02
Hohhot 9.59 Taizhou (Su) 1.93 Pu’er 0.24 Fuyang 0.02
Haikou 8.11 Shaoxing 1.89 Yunfu 0.23 Chaoyang 0.02
Luoyang 7.61 Dali 1.74 Dandong 0.22 Lincang 0.02
Datong 7.45 Chengde 1.55 Xiantao 0.22 Ankang 0.02
Lanzhou 4.26 Wuhai 1.53 Jingzhou 0.21 Shanwei 0.02
Zibo 1.67 Yuxi 1.45 Yan’an 0.21 Fangchenggang 0.02
Anshan 1.25 Yanbian 1.43 Putian 0.21 Yongzhou 0.02
Tangshan 1.25 Songyuan 1.39 Ningde 0.2 Jieyang 0.02
Handan 1.15 Daqing 1.34 Qiannan 0.2 Maoming 0.02
Yinchuan 1.05 Shiyan 1.28 Yangquan 0.19 Hechi 0.02
Benxi 0.43 Yantai 1.25 Yulin (Qin) 0.19 Shannan 0.02
Jilin 0.33 Yancheng 1.25 Yibin 0.19 Bengbu 0.02
Baotou 0.18 Anqing 1.23 Langfang 0.17 Quzhou 0.02
Lhasa 0.06 Dezhou 1.23 Ulanqab 0.17 Jingmen 0.02
Fushun 0.06 Dongying 1.11 Huai’an 0.17 Lvliang 0.02

Huangshi 1.08 Qionghai 0.16 Xinyang 0.02
Heze 1.08 Ngari 0.16 Linfen 0.02

The RNB mileage of other cities is 0 km.
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Appendix C

Table C1. Quantitative comparison with the generated and surveyed RNBs in different roads in different city tiers. The 4–7.5 km of roads
with RNBs are selected as surveyed objects. The total road mileage is around 254.45 km.

Tier City Road name Road mileage Surveyed RNB mileage Generated RNB mileage IoU
(km) (km) (km) (%)

1

Beijing
Guangqu Road 6.37 1.81 1.29 71.52
Beijing–Urumqi Expressway 4.13 3.07 2.95 96.06
Jingmen Highway 5.23 1.58 1.46 92.41

Chongqing
Tushan Road 5.58 0.77 0.43 56.19
Jichang Road 5.24 2.16 1.56 71.24
Inner Ring motorway 4.63 0.39 0.34 89.41

Shanghai
Shanghai–Kunming Expressway 6.17 4.19 4.19 100.00
Shanghai–Jinshan Expressway 6.55 5.50 5.34 97.07
Humin Elevated Road 6.43 3.10 3.10 92.69

Tianjin
Hongqi South Road 4.97 0.91 0.91 95.05
Kunlun Road 5.03 2.01 1.89 93.80
Ninghe–Jinghai motorway 6.23 2.60 2.07 78.22

2

Chengdu
No. 2 elevated ring road 4.80 0.93 0.91 83.80
Chengbei motorway 4.54 2.32 2.32 100.00
Cheng-Yu Ring Expressway 4.65 3.14 2.15 68.48

Guangzhou
City ring motorway 5.10 1.83 1.83 100.00
Huanan Expressway 4.29 1.22 1.22 100.00
Liede Boulevard 4.85 0.89 0.98 91.20

Nanjing
Airport motorway 5.95 1.43 0.91 63.35
Shanghai–Chengdu Expressway 5.28 1.48 1.16 78.52
Jiangbei Avenue 5.51 1.89 2.15 86.20

Wuhan
Longyang Avenue 4.99 0.61 0.74 77.76
Second Ring Road 5.23 2.31 2.31 93.35
Baishazhou elevated road 7.08 2.76 2.74 97.64

3

Fuzhou
Airport motorway 5.82 1.36 1.16 85.53
East No. 3 Ring Road 4.60 1.38 1.34 96.43
North No. 3 Ring Road 4.61 2.04 1.84 90.19

Hefei
Tongling Road 6.66 2.44 2.35 83.76
North–South No. 1 elevated road 6.35 2.66 2.23 83.98
Co-operative south road 4.51 2.04 1.99 97.66

Suzhou
Youxin motorway 6.27 2.75 2.73 99.21
South Ring Road motorway 7.15 4.99 4.85 96.42
Central west road 5.79 3.34 2.98 89.36

Zhengzhou
Longhai East Road 4.51 3.19 2.88 85.44
Longhai Expressway 4.55 2.62 2.54 96.99
East Third Ring road 4.80 1.01 1.20 73.72

4

Dongguan
South Ring Road 4.88 1.04 0.94 90.29
Shenyang–Haikou Expressway 4.70 1.86 1.91 95.68
Huancheng Road 4.72 0.91 0.87 95.30

Nantong
Changjiang Middle Road 4.46 1.86 1.80 96.57
Hongjiang elevated road 5.07 0.85 0.80 94.40
Binjiang Bridge 6.14 1.70 1.98 79.75

Quanzhou
Chengzhou Bridge 4.21 2.45 1.79 73.16
Huacheng South Road 5.73 1.08 1.10 94.21
Airport motorway 4.73 0.68 0.61 90.32

Wenzhou
Ouhai Boulevard 4.74 2.31 2.08 87.12
National highway 104 5.46 0.31 0.35 88.31
Wenzhou Bridge 5.16 0.66 0.60 90.00
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